Lecture 9 — Study of the Laplace operator A = 9 + ... + 02
-This is the study of Harmonic functions :
Au=0 1in Q

- Poisson eq :

-Neumann bc :
Oyu=g on 0N

-Robin be :
ku+0d,u=g on o0

-Methods generalize to variable coefficients, higher order, elliptic linear and non-linear eq and systems.

Second Order Linear PDE

Consider L a 2"? differential operator
n
Lu= Z a;;(x)0i0;u A= (a;;) — symmetric. (1)
2%

The symmetry here is not imposed; once can always rewrite the PDE such that we have symmetry.
Eg

Lu = (111(1')6211, + a12($)3182u —+ a21($)3281u +a22(x)a§u (2)
rewrite
- (a12(x) + a21(x))010au 3)

to obtain symmetry. Suppose we want to introduce a change of coordinate from zgn — ygn.
Let ¢ : R™ — R" be a smooth mapping,

yi = ¢i(x). (5)

We take derivatives by chain and product rule
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0 Ou Oy, \ B
- 5 ( o ax) R @

_ Pu 0000 Ou P
~ OyLdy; Ox; Ox;  Oyi Ox;0x;

Class notes by Ibrahim Al Balushi



Highest orderer (principal) part becomes

B 0%u 0dr
Lpru = ; Ee sz: aij (fﬂ)aixi% 9)

bkl (QS)

Suppose a;;(z) = a;;, and ¢(z) = Tx + ¢, 0;¢5, = Ty;. Note that ¢ defines a linear transformation
and translation.

B =TAT!.
One can choose T s.t
B = diag(1,...,1,—1,...,—1,0,...,0)
—— ——
’I’L+ n_—

where n (respectively n_) is numbers of positive eigenvalues of A.

ny =mnorn_=mn: elliptic.
ny=n—1, n_ =1 : hyperbolic.
ny=n—1 n_=0 : parabolic

The same can be done for variable coefficients case at each pt x € (2.

Elliptic Case
Fig 9.1 if you want to simplify the eq. on an open set, then you have to solve,
a;j(2)0;pr05P1 = Opa (10)
It can solved iff the Riemann-Christoffel tensor of A vanishes ie (A is flat) .
a;j(2)0;010j¢1 = ()0, for some.

Now obstruction in n = 2. For n > 3, the obstruction is Cotton-Weyl tensor.

Structure of A
A constant, ¢linear, TAT® = A generalized orthogonal transformation. (A):
for A=1 : O(A)=0(n)={TecR™ . TT"=1}.

for A =diag(1,...1,-1) :  O(A) =0(n,1)

DpAD@! = 1A generalized conformal transformation. For A = I : n = 2 : very rich. For n > 3
: only conformal transformations are combinations of translations, scaling, orthogonal and inversion.
(Liouville’s thm).



Fundamental Sol of A

Laplace : Ap = 0 outside 2. The solution for ¢ comes from the radial symmetry the Laplacian
operator has, therefore setting » = |x — y| and solving for v := ¢ (r) in Av =0

n—1

— Av=9"(r) + 2y (r) = 0 (11)
yielding
wlla = o) =) = [ T ay
Poisson (1813) : Ap = —4xC'f
n>3

1

For F € C1(Q) N C(Q),

/ Div F dx = / FvdS v eT;H(09Q) unit outwards.  (Gauss Div Theorem 1813)
Q a0

Green’s Identities (1828)

Let u,v € C?(Q)NC°(Q). Suppose F = §u then Div F' = Au and Fv = d,u = (j—z — Fritz notation) ,
however Note that 0, u signifies the directional derivative of u with respect to the exterior unit normal
to T'(0N2) at = € 0€Q; explicitly we have Fv =3, g—;ivi.

By the Gauss divergence theorem:

\Afu/ dx = / Fv dS (Green Q) (12)
Q ro)

Div F

Suppose now that F' = uﬁv. Then the Div F' = §u . ﬁv + uAv and Fv = ud,v, moreover

Tu - Vv + ulv dr = Fv dS (GreenI) (13)
o~ a0
Div F
/ uAv — vAu dx = / udy,v —vo,u dS  (Green II) (14)
Q o0

(where in the Fritz wu - /v was computed explicitly as Do U Vg, = D, Ou O;v.)

Applications

a) In Green @,

If A u=0 = oyu = 0.
20

If Qou=0 = /Au:O
Q



2

b) Uniqueness theorem — In Green I, put v = u with Au = 0 then the “energy identity

/\§u|2=/ ud,u
Q a0

Ifu=0o0r ,u=0o0n 0N
= /\§u|2=0 — u = const in Q, for u € C*(Q).

¢) In (Green I), u = E Fig 9.2. Q. = Br\B., supp v C Bgr

/ EAv = Eo,v—v0,E = — Eov —|—/ uo, F
Qe o0, 0B, 9B.
1
rn72
€ n—1 €
/ 7"”_2 = / rdr €
r
1
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